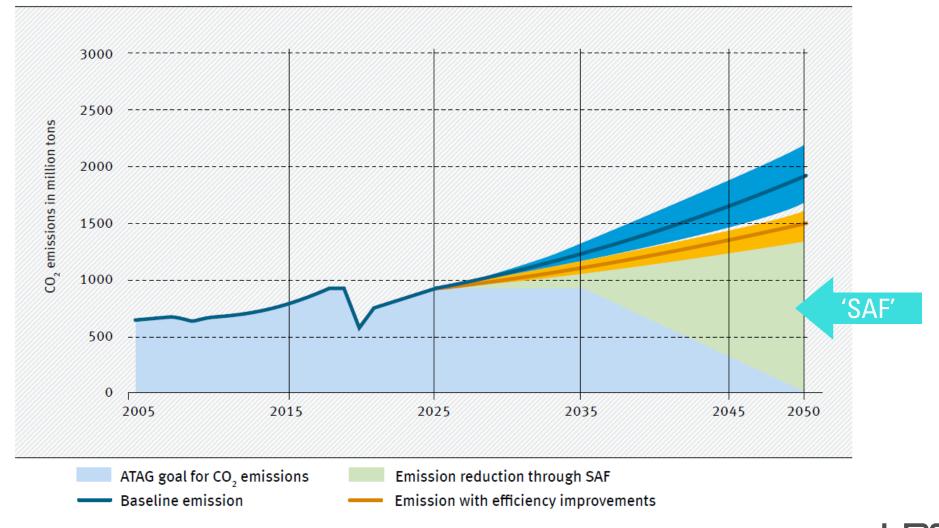


Ludwig Bölkow Systemtechnik

SUSTAINABLE AVIATION FUELS (SAF) – INTRO INTO POWER-TO-LIQUIDS (PTL)

Patrick R Schmidt SAF/PTL Lecture @ University of Surrey 6 February 2024

- 1) Intro
- 2) Technologies
- 3) Sustainability
- 4) Economics
- 5) Discussion



INTRO

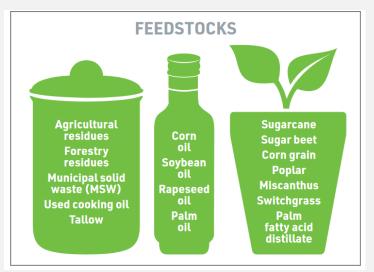
Aviation decarbonisation

• Switch to a renewable fuel base is the key element 'en route' to achieve Paris Agreement

Source: BHL & LBST, Power-to-Liquids, 2022 6 February 2024

Terms & definitions

SAF [sæf] *Acronym*


Sustainable Aviation Fuel – Renewable or waste-derived aviation fuels that meet sustainability criteria [ICAO 2018]

E-SAF ['i:sæf] *Acronym*

Electricity-derived Sustainable Aviation Fuel – Fuels derived from renewable electricity, e.g. power-to-hydrogen (PtH₂), power-to-liquids (PtL), that meet sustainability criteria

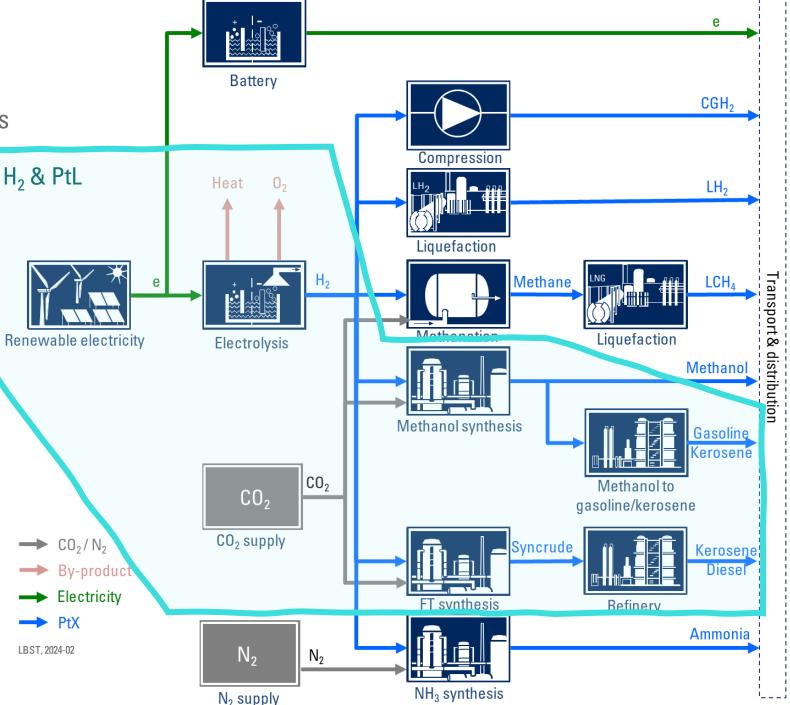
There are different scopes of understanding of e.g. the class term 'SAF'. → To avoid misunderstandings and for precision, use explicit fuel terms!

To date, CORSIA lists only bioderived SAF as default GHG values. Electricity-derived fuels are under development to become 'CORSIA eligible fuel'.

Feedstocks with CORSIA Default Life Cycle Emission Values (February 2019)

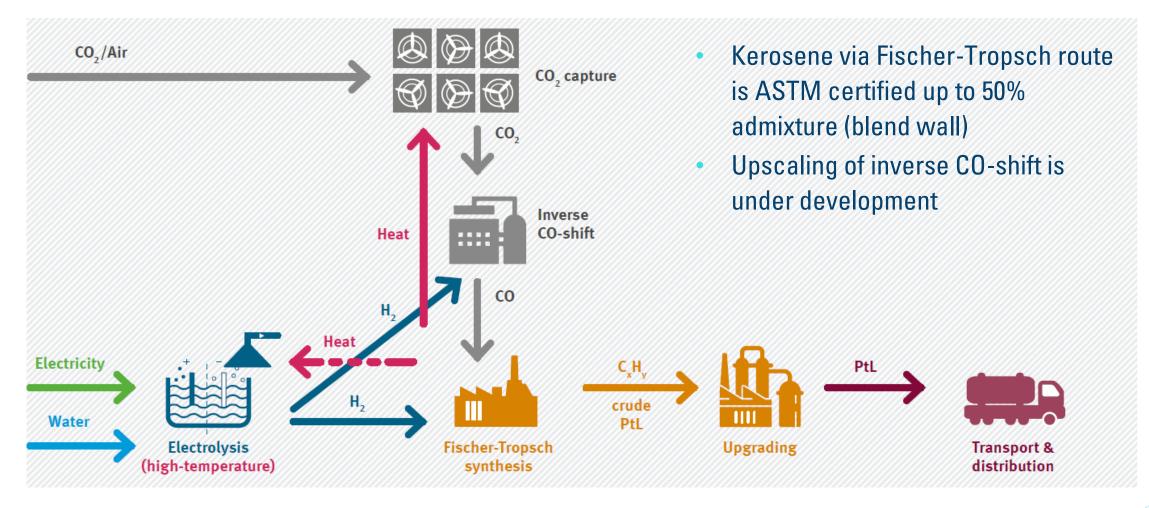
Source: ICAO, An Overview of CORSIA Eligible Fuels, 2019

TECHNOLOGIES



PtX production routes

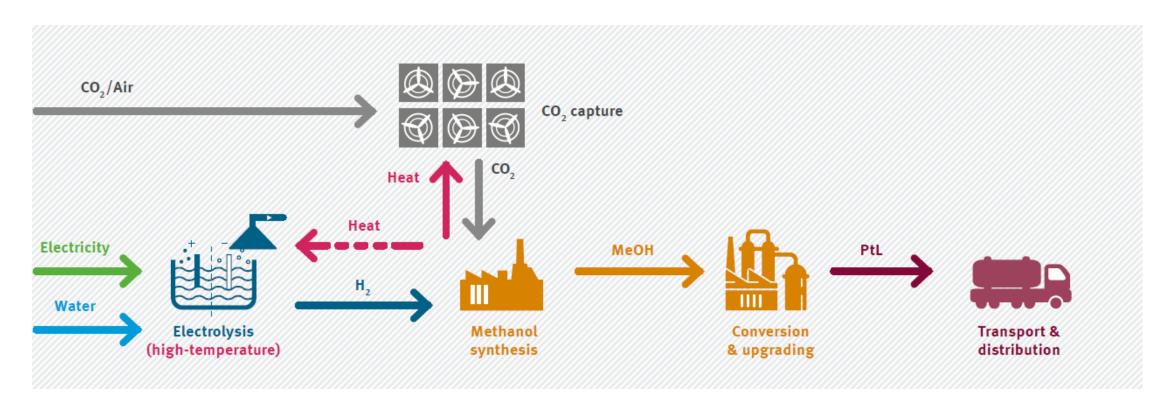
with fuel products for all kinds of uses


Focus of this presentation: H₂ & PtL

- Where feasible, direct electrification is preferred for efficiency reasons → Likely only a niche option for aviation
- Hydrogen (H₂) is the chemical energy carrier most efficiently produced from electricity (via water electrolysis)
- H₂ is the starting point for all PtX fuels, thus no regret
- CO₂ may be sourced from concentrated sources (limited), alternatively from the air (DAC)

Deep dive:

PtL production via **Fischer-Tropsch** (FT) route


LBST

Source: BHL & LBST, Power-to-Liquids, 2022

8 2024 © Ludwig-Bölkow-Systemtechnik GmbH | LBST.de

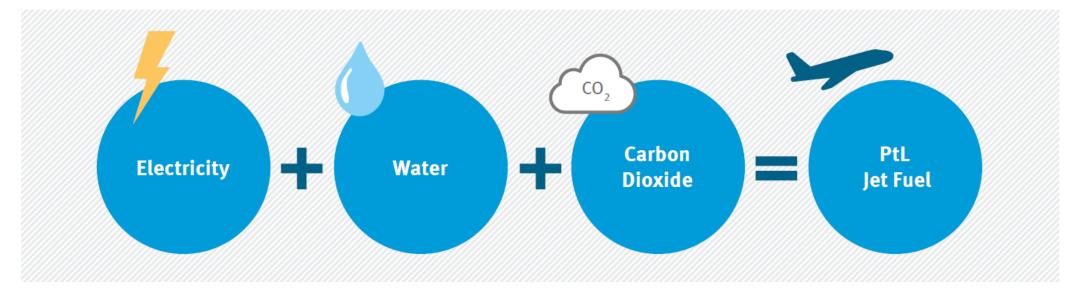
6 February 2024

- **Deep dive:**
- PtL production via **methanol** (MtK) route

- Upscaling of direct air capture (DAC) and high-temperature electrolysis is under development
- Demonstration of commercial-scale methanol-to-kerosene process is pending
- Methanol route (MtK) not yet certified as ASTM jet fuel

Source: BHL & LBST, Power-to-Liquids, 2022

9 2024 © Ludwig-Bölkow-Systemtechnik GmbH | LBST.de



SUSTAINABILITY

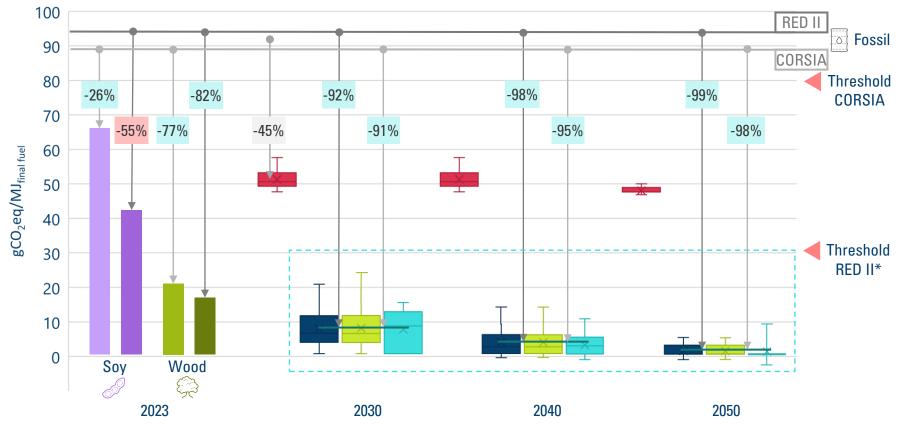
The three main ingredients of PtL jet fuel

• Key environmental safeguards to secure multiple benefits from synthesised e-fuels like PtL

- 1) Additional renewable power plants (to avoid sector carbon leakage)
- 2) Renewable CO₂ sources (to avoid lock-in risk with fossils)
- 3) Use of treated waste or sea water (in regions prone to water supply stress)

Regulatory makes markets, and regulatory may allow for a range of options => Business case analysis

Graphic: BHL & LBST, Power-to-Liquids, 2022

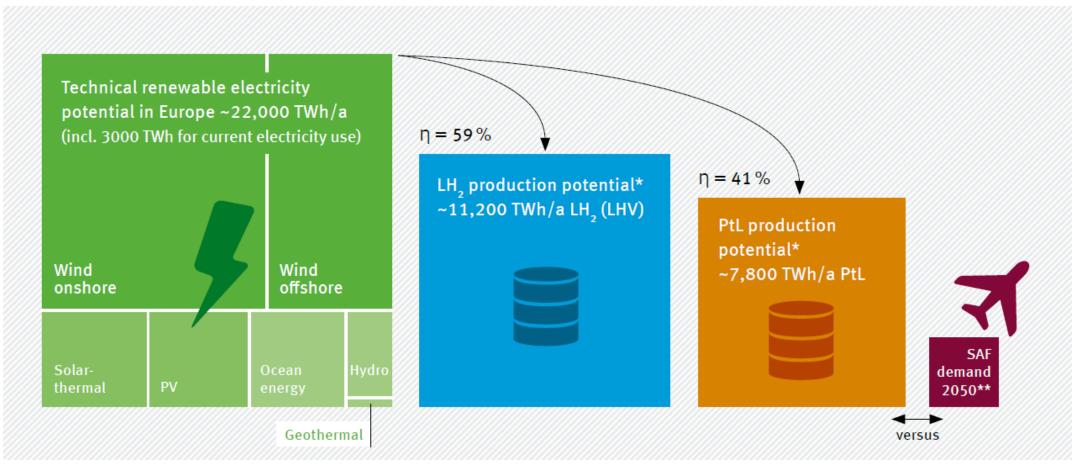

1 2024 © Ludwig-Bölkow-Systemtechnik GmbH | LBST.de

100% e-SAF has significant greenhouse gas reduction potential

Fuel GHG emissions by fuel type and year (in g_{CO2eq}/MJ)

📕 HEFA 📕 HVO 📕 Poplar 📕 Farmed Wood 📕 Drop-in blend (50% PtL) 📕 Drop-in (100% PtL) 📕 Non-Drop-in (100% PtL) 📕 LH₂

* Average between -65% for biofuels and -70% for RFNBO (PtX fuels) Routes (MeOH/, Fischer-Tropsch) and regions are within bandwidths Well-to-wake according to RED II/CORSIA, without H₂ slip, no capex GHG, no high-altitude climate impacts


12 2024 © Ludwig-Bölkow-Systemtechnik GmbH | LBST.de

Source: LBST, E-SAF Study, 2023

6 February 2024

Renewable power potentials vs. potential SAF demand in 2050 (Europe)

* Excluding 3000 TWh/a current electricity use

** Best estimate of 2050 EU national and international flights (63 Mt/a) assumed as PtL (760 TWh_{fuel}/a) requiring some 1690 TWh_e/a

Source: BHL & LBST, Power-to-Liquids, 2022

CO₂ sources have different levels of sustainability

• Sustainability considerations of CO₂ sources for PtL jet fuel

			Regulatory classification			
CO ₂ sources	Renewability	Environmental sustainability	Alternative CO2 uses	Towards carbon-neutrality; Risks	Eligible under EU RED II [RED II-DA 2023]	
Extraction from air		Subject to renewable energy				
Biogas upgrading			Power-to-methane	Other land or sustainable biomass uses	Complies with sustainability and greenhouse gas savings criteria and CO ₂ capture did not receive credits for emission savings	
Solid biomass fired heat (& power) plants		Subject to feedstock & process	Bio-CCS (net negative)			
Fermentation to alcohols			e.g. beverage industry			
Geothermal sources		Subject to geo-physical CO ₂ cycle	CO ₂ re-injection (closed-loop)	Hot dry rock a potential no-go	CO ₂ was previously released naturally	
Cement, burnt lime or glass production		Subject to energy input; process-related emissions	Power-to-chemicals	Shift to alternative materials, recycling; Technology lock-in	CO ₂ has been captured from an EU-ETS activity and has been taken into account upstream in an effective carbon pricing system and is incorporated in the chemical composition of the fuel before 2041 *	
Steel production (coke-based)		Subject to feedstock & process	Top-gas for heating and reduction	Shift to direct reduction with H ₂ , recycling, alternative materials; Technology lock-in		
Fossil fuel firing			Fossil CCS	Phase-out; Technology lock-in		

* 2036 for combustion of fossil fuels for electricity generation. No fuel combustion for the specific purpose of producing CO₂.

14 2024 © Ludwig-Bölkow-Systemtechnik GmbH | LBST.de

Source: LBST, E-SAF Study, 2023

PtL water demand compared to selected biofuels

- Energy crops in regions with sufficient water availability only
- PtL specific water demand is comparably negligible; point demand at PtL production plants requires check of local conditions
- PtL production may use sea and wastewater after treatment to process water quality

Alcohol-to-Jet PtL HEFA solar, wind jatropha maize

(Volume representation, PtL water demand 4 $L_{H_{20}}/kg_{jet fuel}$)

Deep dive:

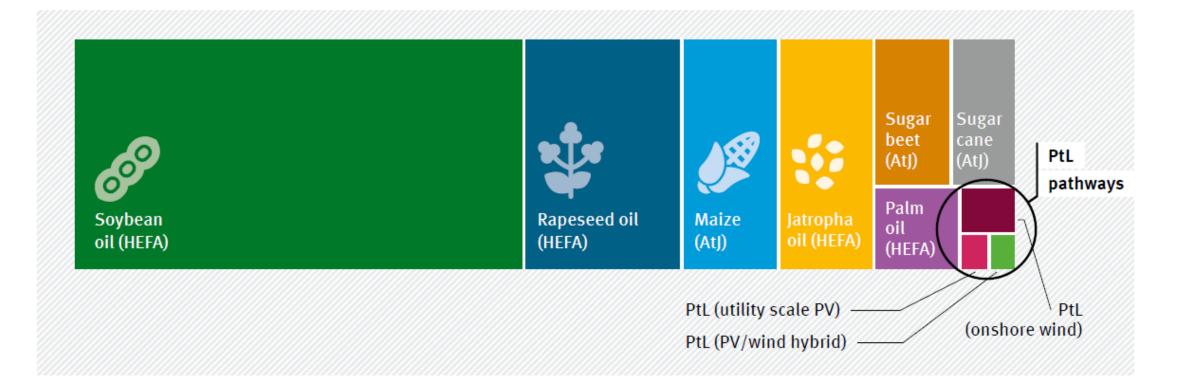
Water footprint of various alternative fuel pathways (global average)

Feedstock (pathway)	Blue water (m³ / GJ)	Green water (m ³ / GJ)	Grey water (m ³ / GJ)	Cumulative (1000L _{H2} 0/L _{jet fuel})	Reference
Jatropha oil (HEFA)	335	239	n.a.	21.8	Feedstock to product conversion efficiencies: (Mäki-Arvela et al. 2021) (Geleynse et al. 2018)
Rapeseed oil (HEFA)	20	145	29	7.68	
Soybean oil (HEFA)	11	326	6	14.48	
Palm oil (HEFA)	0	150	6	6.05	Jatropha oil water demand:
Bioethanol from sugar cane (AtJ)	25	60	6	3.91	(Gerbens-Leenes et al. 2009)
Bioethanol from sugar beet (AtJ)	10	31	10	2.20	All other feedstock water demand:
Bioethanol from maize (AtJ)	8	94	19	5.21	(Mekonnen & Hoekstra 2010)
PtL via FT	0.12	n.a.	n.a.	0.0041	LBST, this study
PtL via methanol	0.11	n.a.	n.a.	0.0037	LBST, this study

Pathway-specific feedstock to product conversion efficiencies and product fraction distributions have been taken from the references specified and considered in the calculations. Water footprints have been allocated to the respective products according to their energy content as proposed by Prussi et al. (2021).

Definitions

Blue water footprint: ground/surface water consumed for production of feedstock (evapotranspiration + water contained in product)


Green water footprint: precipitation water consumed for production of feedstock

(evapotranspiration + water contained in product)

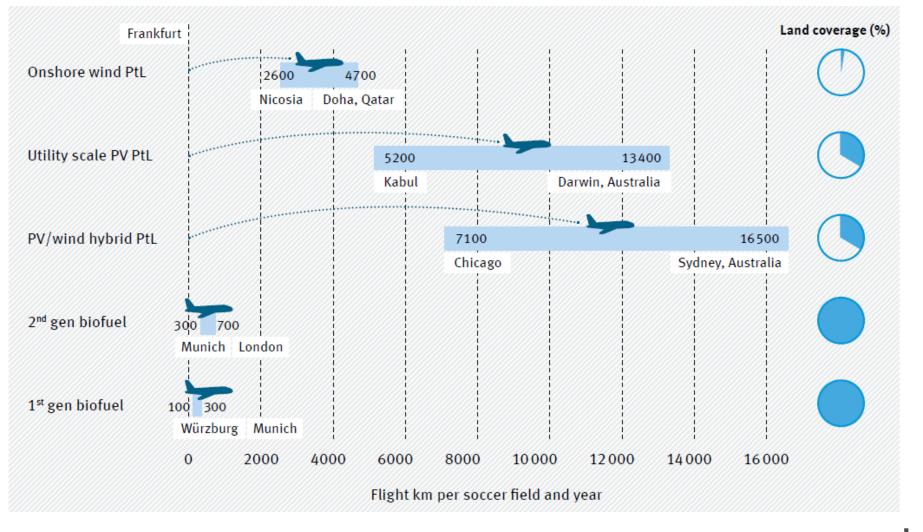
Grey water footprint: freshwater required for pollution offset (pollutant assimilation)

Gross area needed to yield one ton of jet fuel per year

⇒ PtL net area demand* is furthermore much lower compared to energy crops (where gross ~ net)

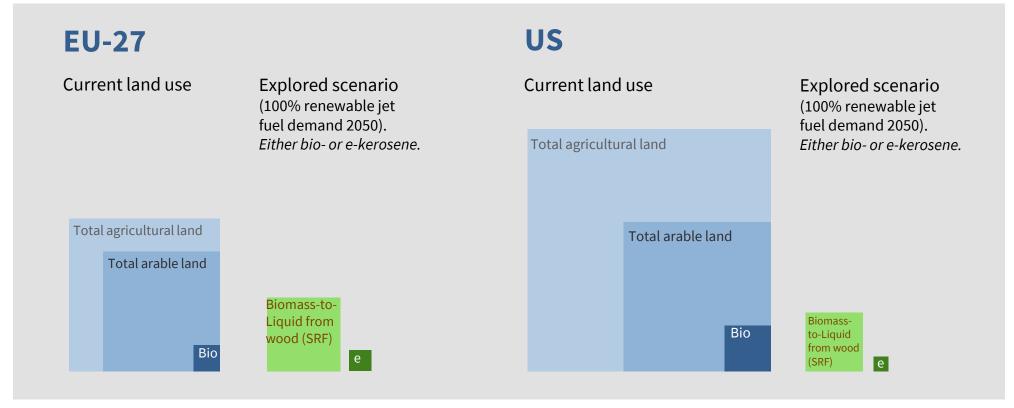
* i.e. actual area occupation (e.g. for wind tower foundations, access ways, etc.)

17 2024 © Ludwig-Bölkow-Systemtechnik GmbH | LBST.de


Source: BHL & LBST, Power-to-Liquids, 2022

6 February 2024

Achievable air mileage for an A320neo using the annual energy yield from an area the size of a soccer field

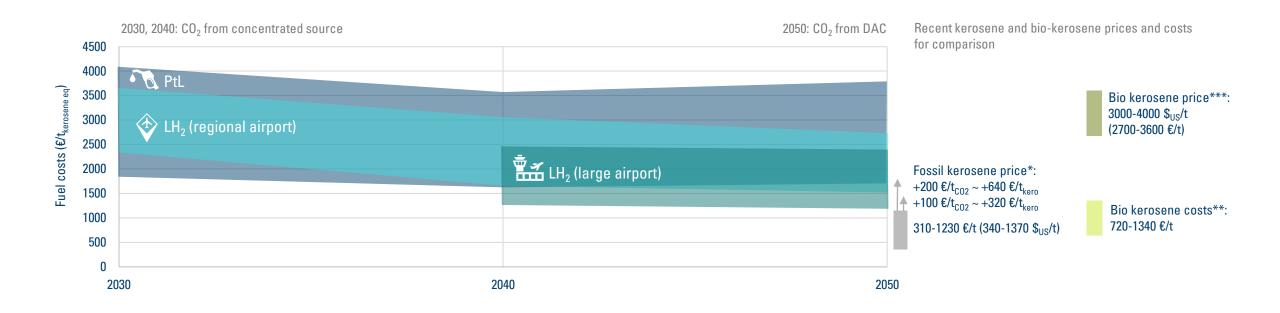

• Soccer field = 0.71 ha

Source: BHL & LBST, Power-to-Liquids, 2022

Counterfactual:

- Comparison of current land uses vs. gross area requirement
- Approximately 80% and 20% of gross land area currently dedicated to bioenergy production in the EU-27 and the US respectively would be sufficient to supply the estimated kerosene jet fuel demand in 2050 with ekerosene.

19 2024 © Ludwig-Bölkow-Systemtechnik GmbH | LBST.de



ECONOMICS

E-SAFs show significant cost reduction potential in the next decades and main driver for LH₂ economics is liquefaction capacity

Fuel cost bandwidths (€/t kerosene-equivalent) by fuels, capacity, and time

* Min/max in the timeframe 01/2016-07/2023 based on market data by [IATA 07/2023] (COVID 19 effect excluded)

** BtL via Fischer-Tropsch synthesis of gasified woody biomass from short-rotation forestry, Data by [IEA 2020]

*** Data by [Argus 05/2023]

21 2024 © Ludwig-Bölkow-Systemtechnik GmbH | LBST.de

Source: LBST, E-SAF Study, 2023

6 February 2024

DISCUSSION

Key take aways – up for discussion

- Aviation is too important to build its fuel future 'on waste'
- Two SAF avenues that need to be pushed in parallel for their sustainability & scalability: PtL and PtH₂
- European renewable power production potentials are (technically) sufficient to cater for all energy needs
- A minimum share of domestic SAF production is recommendable for energy supply security
- The slower the progress in switching aviation's energy basis, the more likely become demand measures to achieve Paris Agreement
- Climate impacts from aircraft non-CO₂ emissions in high altitudes are the elephant in the room

Thank you for your attention

• Feel free to reach out for any questions

Patrick R Schmidt Senior Project Manager / Consultant E: <u>Patrick.Schmidt@LBST.de</u> <u>LinkedIn</u>

Yanni S Astono Researcher E: <u>Yanni.Astono@LBST.de</u> <u>LinkedIn</u>

Ludwig-Bölkow-Systemtechnik GmbH Daimlerstrasse 15 85521 Ottobrunn Germany T +49 89 608110-0 info@LBST.de www.LBST.de

6 February 2024

Ludwig-Bölkow-Systemtechnik

Profile

- Independent expert for sustainable energy and mobility with 4 decades of experience
- Bridging technology, markets, and policy
- Renewable energies, fuels, infrastructure
- Technology-based strategy consulting, System and technology studies, Sustainability assessment
- Global and long-term perspective
- Rigorous system approach thinking outside the box
- Serving international clients in industry, finance, politics, NGOs

References

- Deutsche Aircraft *E-SAF Study*
- ClimateWorks Foundation *E-Kerosene for Commercial Aviation*
- UBA Power-to-Liquids for Aviation
- World Energy Council (Germany) *International H₂ Strategies*
- Hydrogen Council *H*₂ *Decarbonization Pathways*
- Numerous PtX studies for industry, politics, and associations

Study commissioned by the Deutsche Aircraft Topics: comparing the economic and environmental performance of PtH₂ and PtL for North America, Europe including North Africa and the Middle East into account as export regions

Link: https://en.lbst.de/publikationen/techno-economics-of-ptl-and-pth2-2023/

Authors & full title:

Schmidt, P.R., Weindorf, W., Failer, S., Astono, Y., Ullmann, A.: E-SAF: Techno-Economics of PtL and PtH₂ – Focus North America and Europe; Ludwig-Bölkow-Systemtechnik GmbH - LBST, Ottobrunn/Munich, November 2023

E-SAF: Techno-Economics

of PtL and PtH₂

Study: E-Kerosene for Commercial Aviation (2022)

- Study funded by the ClimateWorks Foundation
- Joint expertise of dena, LUT and LBST
- Topics:

PtL sustainable aviation fuel (SAF) volumes, cost, area demand and renewable energy competition in the US and Europe from 2030 to 2050

Link: <u>https://www.dena.de/fileadmin/dena/Publikationen/PDFs/2022/STUDY_E-Kerosene_for_Commercial_Aviation.pdf</u>

Authors & full title:

Matteo Micheli (dena), Christian Breyer (LUT), Mahdi Fasihi (LUT), Ayobami Solomon Oyewo (LUT), Werner Weindorf (LBST), Patrick R. Schmidt (LBST): E-Kerosene for Commercial Aviation From Green Hydrogen and CO₂ from Direct Air Capture; September 2022

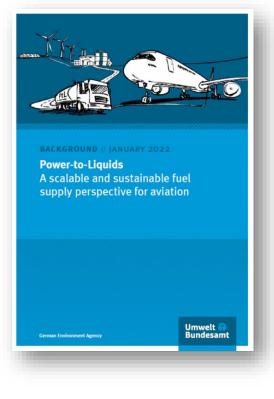
STUDY

E-Kerosene for Commercial Aviation

From Green Hydrogen and CO₂ from Direct Air Capture – Volumes, Cost, Area Demand and Renewable Energy Competition in the United States and Europe from 2030 to 2050

- Commissioned by German Environment Agency (UBA)
- Joint expertise of LBST and Bauhaus Luftfahrt e.V.

Topics:


- Technology readiness and development potentials
- Techno-economics
- Environmental performance (efficiency, greenhouse gases, land and water demand)
- Link: https://www.umweltbundesamt.de/publikationen/power-to-liquids

Authors & full title:

Valentin Batteiger (BHL), Patrick Schmidt (LBST), Kathrin Ebner, Antoine Habersetzer, Leonard Moser, Werner Weindorf, Tetyana Raksha: Power-to-Liquids – A scalable and sustainable fuel supply perspective for aviation; German Environment Agency (ed.), Background // January 2022, ISSN: 2363-829X

Study: E-Fuels (2022, update planned 2024)

- Commissioned by Concawe and Aramco
- Expertise by LBST with support from E4tech
- Topics:
 - Techno-environmental (Part 1) and economic (Part 2) analysis of different e-fuels pathways produced in different regions of the world (North, Centre & South of Europe, as well as Middle East & North Africa) in 2020, 2030 & 2050, with assessments of sensitivities to multiple key techno-economic parameters
 - An assessment of stand-alone units versus e-plants integrated with oil refineries
 - A comparison of e-fuels production costs versus fossil fuels, biofuels & e-fuels from nuclear electricity
 - An analysis of the context of e-fuels in the future in Europe (potential demand, CAPEX, renewable electricity potential, land requirement, feedstocks requirements)
 - A deep dive into the safety and environmental considerations, societal acceptance, barriers to deployment and regulation
- Link: <u>https://www.concawe.eu/publication/e-fuels-a-techno-economic-assessment-of-european-domestic-</u> production-and-imports-towards-2050/

Authors & full title:

Alba Soler (Concawe), Victor Gordillo (Aramco), William Lilley (Aramco), Patrick Schmidt (LBST), Weindorf Werner (LBST), Tom Houghton (E4tech), Stefano Dell'Orco (E4tech): E-Fuels: A techno-economic assessment of European domestic production and imports towards 2050; November 2022

Concawe

oramco

Report

E-Fuels: A techno-

towards 2050

economic assessment of European domestic

production and imports

